

Polycyclic aromatic hydrocarbons in sediment

UniversalExtractor E-800:

Soxhlet warm extraction of a sediment sample using the UniversalExtractor E-800 for the determination of polycyclic aromatic hydrocarbons (PAHs)





# 1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds that consist of fused aromatic rings and do not contain heteroatoms or carry substituents.

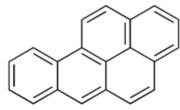



Figure 1: Formula of Benzo(a)pyrene.

PAHs occur in oil, coal and tar produced by carbonization of coal, but not in bitumen. They can also be found in grilled meat, cigarette smoke and automobile exhaust. PAH are persistent, ubiquitous and some of them have carcinogenic, mutagenic and teratogenic properties. There are more than 100 different PAH, but usually the 16 PAH defined by the United States Environmental Protection Agency (EPA) are analyzed. These are acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, chrysene, dibenz(a)anthracene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene and pyrene. Benzo(a)pyrene is often used as a lead substance.

This Application Note describes the extraction and determination of these EPA-PAHs in a dried sediment SETOC sample according to EPA 3541 [1]. The sample was extracted with the UniversalExtractor E-800 in the Soxhlet warm mode. The quantification was done by Labor Veritas Zurich, an ISO 17025 accredited laboratory.

## 2. Equipment

- · UniversalExtractor E-800 Pro (with chamber heater)
- Syncore<sup>®</sup> Analyst with flushback module, R-12 with 1 mL appendix
- Vacuum Pump V-700 with Interface I-300 Pro and Recirculating Chiller F-308
- GC-MS/MS Thermo Scientific TSQ-Quantum XLS
- Analytical balance (accuracy ± 0.1 mg)

## 3. Chemicals and Materials

Chemicals:

- n-Hexane, for analysis, Reag. ACS, Sigma Aldrich (32293)
- Acetone, MS SUPRASOLV, Sigma Aldrich (1006582500)

### Standard:

Naphthalene-d<sub>8</sub>; acenaphthene-d<sub>10</sub>; ayrene-d<sub>10</sub>; phenanthrene-d<sub>10</sub>; chrysene-d<sub>12</sub>; benzo(b)fluoranthene-d<sub>12</sub>; indeno(1,2,3-cd)pyrene-d<sub>12</sub>; anthracene-d<sub>10</sub>; benzo(a)pyrene-d<sub>12</sub>; benzo(ghi)perylene-d<sub>12</sub>in acetonitrile.

For a safe handling please pay attention to all corresponding MSDS.

Materials:

- · Sodium sulphate, anhydrous, Sigma Aldrich (798592)
- Extraction thimble 33 x 150, BUCHI (11067446)

### Sample:

 Sediment samples, SETOC 777 (61), dry sample, Wageningen Evaluation Programs for analytical Laboratories, University of Wageningen [2].



# 4. Procedure

The extraction and analysis of PAH in sediment includes the following steps:

- · Preparation of sample
- Extraction with UniversalExtractor E-800
- Concentration of the raw extracts using the Syncore®
- Quantification by GC-MS

### 4.1. Preparation of the sample

- 1. Place a paper thimble 33 x 150 into the holder.
- 2. Weigh in 10 g sodium sulphate into the paper thimble.
- 3. Weigh in 10 g of sediment sample using the analytical balance and mix with a spatula carefully.
- 4. Add 1.5 mL of the internal standard solution.

### 4.2. Extraction with UniversalExtractor E-800

- 1. Insert the paper thimble containing the sample into the extraction chamber
- 2. Adjust the optical sensor to the sample height
- 3. Add the solvent to the solvent beaker
- 4. Program the extraction method according to the parameters shown in Table 1.
- 5. Close the extraction shield
- 6. Start the extraction

# Table 1: Extraction method for UniversalExtractor E-800.

| Parameter                | value                    |  |  |
|--------------------------|--------------------------|--|--|
| Extraction method        | Soxhlet warm             |  |  |
| Solvent                  | n-Hexane / Acetone (1:1) |  |  |
| Solvent volume           | 150 mL                   |  |  |
| Extraction time          | 180 min                  |  |  |
| Extraction heating level | 11                       |  |  |
| Chamber heating level    | 3                        |  |  |
| Rinse time               | 5 min                    |  |  |
| Rinse heating level      | 11                       |  |  |
| Drying time              | 5 min                    |  |  |
| Drying heating level     | 10                       |  |  |
|                          |                          |  |  |

### 4.3. Concentration of the raw extracts using the Syncore®

1. Evaporate the raw extract (around 30 mL) to 1 mL using the Syncore<sup>®</sup> R-12 with vessels with 1 mL appendix using the parameters shown in Table 2.

| Table 2: Parameters | for the | Syncore <sup>®</sup> | R-12. |
|---------------------|---------|----------------------|-------|
|---------------------|---------|----------------------|-------|

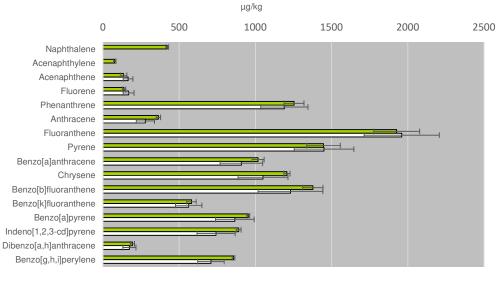
| Step                                       | Pressure start | Pressure end | Time                      |
|--------------------------------------------|----------------|--------------|---------------------------|
| 1                                          | 950            | 350          | 1 min                     |
| 2                                          | 350            | 350          | 1 min                     |
| 3                                          | 350            | 300          | 1 min                     |
| 4                                          | 300            | 300          | 2 min                     |
| 5                                          | 300            | 270          | 1 min                     |
| 6                                          | 270            | 270          | 15 min                    |
| 7                                          | 270            | 200          | 3 min                     |
| Total time                                 |                |              | 24 min                    |
| Temperature p<br>Temperature c<br>Rotation |                |              | 50 °C<br>55 °C<br>250 Rpm |



## 4.4. Quantification by GC-MS

The PAHs were quantified using the parameters in Table 3.

Table 3: GC-MS parameters for the quantification of PAHs.


| , , ,        |                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------|
| GC-MS/MS     | Thermo Scientific TSQ-Quantum XLS                                                                |
| Column       | 15 m x 0.25 mm (i.d.), 0.25 $\mu m$ film thickness, Mega-5 MS column.                            |
| Oven program | 60°C (hold for 1 min); 60 °C – 150 °C at 30 °C/min; 150°C - 320 °C at 15 °C/min; hold for 4 min. |
|              |                                                                                                  |

## 5. Result

The extraction by the UniversalExtractor E-800 confirms the consensus values of the reference SETOC sample. The sample was extracted in triplicate (n=3) together with a blank sample. The results are shown Table 4 and Figure 2. Low variations between the three extractions were found.

|                           | 0                             |          |                     |      |
|---------------------------|-------------------------------|----------|---------------------|------|
| Table 4: SETOC 777 Sedime | ent <u>(</u> 61) extraction b | y Univer | salExtractor E-800, | n= 3 |
|                           | Mean value                    | RSD      | SETOC value         | RSD  |
|                           | µg/kg                         | %        | µg/kg               | %    |
| Naphthalene               | 421                           | 2        | -                   | -    |
| Acenaphtylene             | 77                            | 10       | -                   | -    |
| Acenaphthene              | 134                           | 16       | 164                 | 19   |
| Fluorene                  | 138                           | 8        | 168                 | 21   |
| Phenanthrene              | 1253                          | 5        | 1190                | 13   |
| Anthracene                | 363                           | 4        | 278                 | 22   |
| Fluoranthene              | 1927                          | 8        | 1960                | 13   |
| Pyrene                    | 1447                          | 8        | 1450                | 14   |
| Benz(a)anthracene         | 1017                          | 4        | 908                 | 15   |
| Chrysene                  | 1207                          | 2        | 1050                | 16   |
| Benzo(b)fluoranthene      | 1377                          | 5        | 1230                | 17   |
| Benzo(k)fluoranthene      | 580                           | 5        | 562                 | 15   |
| Benzo(a)pyrene            | 953                           | 1        | 865                 | 15   |
| Indeno(1,2,3-cd)pyrene    | 890                           | 2        | 742                 | 17   |
| Dibenzo(ah)anthracene     | 193                           | 7        | 173                 | 25   |
| Benzo(ghi)perylene        | 587                           | 1        | 708                 | 12   |
| Sum PAH                   | 12883                         | 4        | 11800               | 13   |
|                           |                               |          |                     |      |





□ UniversalExtractor E-800 □ SETOC 777

Figure 2: Results of the PAH determination of a sediment sample using the UniversalExtractor E-800 and SETOC consensus values.

# 6. Method development

For method development the samples were extracted for 2 h, 3 h and 4 h. The results are shown in Table 5 and Figure 3.

Table 5: Recoveries of PAHs after extraction times of 2h, 3h and 4h. Extraction performed on UniversalExtractor E-800, n = 3.

|                        | SETOC value | Recovery 2h | Recovery 3h | Recovery 4h |
|------------------------|-------------|-------------|-------------|-------------|
|                        | µg/kg       | %           | %           | %           |
| Naphthalene            | -           |             |             |             |
| Acenaphtylene          | -           |             |             |             |
| Acenaphtene            | 164         | 68          | 82          | 70          |
| Fluorene               | 168         | 79          | 82          | 79          |
| Phenanthrene           | 1190        | 87          | 105         | 103         |
| Anthracene             | 278         | 112         | 131         | 132         |
| Fluoranthene           | 1960        | 99          | 98          | 91          |
| Pyrene                 | 1450        | 94          | 100         | 95          |
| Benz(a)anthracene      | 908         | 92          | 112         | 104         |
| Chrysene               | 1050        | 81          | 115         | 111         |
| Benzo(b)fluoranthene   | 1230        | 110         | 112         | 117         |
| Benzo(k)fluoranthene   | 562         | 90          | 103         | 102         |
| Benzo(a)pyrene         | 865         | 86          | 110         | 106         |
| Indeno(1,2,3-cd)pyrene | 742         | 103         | 120         | 115         |
| Dibenzo(ah)anthracene  | 173         | 104         | 112         | 103         |
| Benzo(ghi)perylene     | 708         | 100         | 121         | 115         |



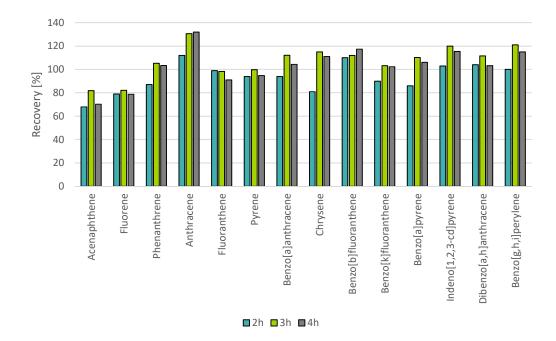



Figure 3: Recoveries of PAH determination with different extraction times 2 h, 3 h and 4 h. Extraction performed with UniversalExtractor E-800, n= 3.

An extraction time of 3h is sufficient for the extraction of PAHs from a sediment sample. A longer extraction time is not required. The recoveries received after 2h extraction time were too low.

# 7. Conclusion

The method presented in this Application Note demonstrates that the extraction by UniversalExtractor E-800 using the Soxhlet warm mode is a fast and reliable way to extract PAH from sediment samples.

## 8. Acknowledgements

We greatly acknowledge Labor Veritas Zürich, Mr. Pascal Leupin and Mr. Oleg Altergott for their support for the development of this Application Note.

## 9. References

[1] U.S. Environmental Protection Agency. Method 3541, Automated Soxhlet Extraction

[2] SETOC Round Robin, http://www.wepal.nl/website/products/SEToc.htm